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1. Introduction  

Definition 1.1: (Semi Topological Group) A triple (𝐺, 𝜏,∗) is called as semi-topological group, where (𝐺, 𝜏) 

is a topological-space and (𝐺,∗)  is a group, if the group operations ∗ : 𝐺 × 𝐺 → 𝐺 that maps (𝑥, 𝑦) to 𝑥 ∗ 𝑦 is 

continuous in each variable, i.e., the mapping 𝑔𝑦𝑜
: 𝐺 → 𝐺 by 𝑥 → 𝑥 ∗ 𝑦0 and  𝑔𝑥𝑜

: 𝐺 → 𝐺 by  𝑦 → 𝑥0 ∗ 𝑦 are 

is continuous for all 𝑦0 in G and  𝑥0 ∈ 𝐺, respectively 

Remark 1.1: A semi-topological group is a pair (𝐺,∗) with a topology 𝜏 such that ∀𝑥, 𝑦 ∈ 𝐺 and each open 

set 𝑊 ∋ 𝑥 ∗ 𝑦−1 there are open sets 𝑈 ∋ 𝑥  and 𝑉 ∋ 𝑦 such that 𝑈 ∗ 𝑉−1 ⊂ 𝑊. 

Example 1.1: The (𝑅, +, 𝜏ℓ), where 𝜏ℓ is the lower limit topology, 𝜏ℓ = {[𝑎, 𝑏): 𝑎, 𝑏 ∈ 𝑅} generated by a set 

[𝑎, 𝑏): 𝑎, 𝑏 ∈ 𝑅  and 𝑎 < 𝑏. Here, the mapping (𝑥, 𝑦) → 𝑥𝑦 is a continuous, but 𝑥 → 𝑥−1 is not continuous. 

Remark 1.2: For semi-topological and topological groups we have the following results: 

(a) When we take group operation addition instead of multiplication then we replace 𝑥. 𝑦 by 𝑥 + 𝑦 and  

𝑥−1 by −𝑥.  

(b) Clearly by definition, every topological-group is a semi topological, but converse-is-not true, in 

general.  

Theorem 1.1: Let X and Y be “two spaces. Suppose that 𝑓: 𝑋 → 𝑌 is a continuous mapping. Then the 

following-statements are equivalent:” 

(a)  𝑓 is continuous. 

(b) For each closed set 𝐶 of 𝑌, 𝑓−1(𝐶) is closed in 𝑋.  
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(c) For each 𝑥 ∈ 𝑋 and each neighborhood 𝑉 of 𝑓(𝑥), 𝑓−1(𝑉) is a neighborhood of 𝑥 in 𝑋. 

(d) For each  𝑥 ∈ 𝑋 and each  𝑉 ∋ 𝑓(𝑥),  ∃ 𝑈 ∋ 𝑥 such that 𝑓(𝑈) ⊂ 𝑉. 

(e) For each 𝐵 ⊂ 𝑌, 𝑓−1(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅   ⊂ 𝑓−1(𝐵 ̅). 

(f) For each𝐴 ⊂ 𝑋,  𝑓(𝐴)̅̅ ̅̅ ̅̅ ⊂ 𝑓(𝐴 ̅).   

Definition 1.2: Let G be a semi topological group. “Let a be any fixed element of G. Then the mappings 

𝑟𝑎: 𝑥 → 𝑥𝑎 and ℓ𝑎: 𝑥 → 𝑎𝑥 on G are called right and left translations respectively.”  

Theorem 1.2: Let G be a semi-topological group and 𝑎 ∈ 𝐺. The functions from G to G are “called right and 

left translations of G by the element a are given as” 

𝑟𝑎 ∶  𝑥 → 𝑥𝑎 and   ℓ𝑎: 𝑥 → 𝑎𝑥. 

The translations of G give homeomorphism in each case. 

Proof: “In order to show that 𝑟𝑎 is a homeomorphism. We first claim that 𝑟𝑎  is bijective. Let 𝑦 ∈ 𝐺, then we 

can write 𝑟𝑎: 𝑦 → 𝑦𝑎. This mapping maps the element 𝑦𝑎−1  to y by multiplying 𝑎−1 on the right both sides.” 

So 𝑟𝑎 is surjective, as every element of co domain is mapped to at least one element of the domain that is, 

image and co-domain are equal.  

Now we claim that 𝑟𝑎 is injective. Assume that 𝑟𝑎(𝑥) = 𝑟𝑎(𝑦) for some 𝑥, 𝑦 ∈ 𝐺.  

This implies that 𝑥𝑎 = 𝑦𝑎. Now by multiplying 𝑎−1 on the right, we get, 𝑥 = 𝑦.  

Hence, 𝑟𝑎 is injective.  

As “G is a semi-topological group, then, it has continuous group operations in each variable separately.” 

“Let W be a neighborhood of 𝑥𝑎. Since G is a semi topological group then ∃ 𝑈 ∋ 𝑥 such that 𝑈𝑦 ⊂ 𝑊.” 

Because, function 𝑟𝑎 fixes 𝑎 ∈ 𝐺, so that we get ∀ 𝑊 ∈  𝐹𝑥𝑎 ∃ 𝑈 ∈ 𝐹𝑥 such that 𝑈𝑦 ⊂  𝑊, this shows 𝑟𝑎 is 

continuous. 

Consider the inverse mapping 𝑟𝑎
−1(𝑥): 𝑥 →  𝑥𝑎−1, which is equivalent to 𝑟𝑎  ∶ 𝑥𝑎 → 𝑥. By same argument one 

can say 𝑟𝑎
−1 is continuous. Hence, 𝑟𝑎 is a homeomorphism. Similarly, we can show it for left translation ℓ𝑎.   

2. Topological Group 

In this section we discuss the general results concerning topological groups, translations in topological groups 

and neighborhood system of the identity of topological group.   
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Definition 2.2: Let (𝐺, 𝑚) be a group and 𝜏 be a topology on G, then we say that (𝐺, 𝑚, 𝜏) or simply G is a if 

the two basic operations: 𝑚 ∶ 𝐺 × 𝐺 → 𝐺 defined by (𝑥, 𝑦) → 𝑚(𝑥, 𝑦) = 𝑥 𝑦, and the inversion map: 𝑖 ∶ 𝐺 →

𝐺 defined by 𝑥 →  𝑥−1 are continuous. “Simply we can say if the function 𝐺 × 𝐺 → 𝐺, defined by (𝑥, 𝑦) →

𝑥 𝑦−1 is continuous. Then G is a topological group. 

Example 2.1: A group with discrete topology is a topological group.” 

Example 2.2: The set 𝑅∗ = 𝑅 ∖ {0}, multiplication as group operation and the topology induced from R.  

Example 2.3: 𝑅+ = {𝑥 ∈ 𝑅 ∶ 𝑥 > 0}, with a topology induced from 𝑅 ∖ {0}. This is the subgroup of 𝑅 ∖ {0}. 

Remark 2.1:“The continuity of function depends not only upon the function f itself, but it also depends upon 

the topologies on the domain and range space. “For example if the topology of range space Y is given by basis 

B. Then in order to prove the continuity of f, it is sufficient to show that inverse image of every basis element 

is open.” 

Theorem 2.1:“Every topological group is a semi topological group, but converse is not true always.” 

Proof: By definition, we can say that every topological group is a semi topological group. The converse is not 

true in general. 

Example 2.4: Let 𝐺 = 𝑅, be an additive abelian group. Let G be a set having the topology which has a basis 

element of form {[𝑎, 𝑏): −∞ < 𝑎 ≤ 𝑥 < 𝑏 < ∞}. This means that the topology on G is a lower limit topology.  

Since 0 is a identity element of 𝐺 = 𝑅 with respect to addition as binary operation. Clearly, for each 

neighbourhood [𝑎, 𝑏) of 0. We see that [𝑎, 𝑏/2) is also neighborhood of 0. It is suffices to show that 

𝑔(𝑥, 𝑦) = 𝑥 + 𝑦 is continuous in each variable separately.  

Let U and V are two subsets of a group G then,  

𝑈 + 𝑉 = {𝑥 + 𝑦: 𝑥 ∈ 𝑈 𝑎𝑛𝑑 𝑦 ∈ 𝑉} and −𝑈 =  {−𝑥: 𝑥 ∈ 𝑈}.  

As g is continuous in x or y if and only if for each  𝑊 ∋ 𝑥 + 𝑦 there exists a neighborhood 𝑈 ∋ 𝑥 or 𝑉 ∋ 𝑦  

such that  𝑈𝑦 ⊂ 𝑊 or 𝑥𝑉 ⊂ 𝑊.  

Now, [𝑎, 𝑏) and [𝑎,
𝑏

2
) are neighbourhoods of 0, so it follows that g is continuous in each variable separately at 

0.  
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Hence, by definition G is a semi-topological group. We claim that the mapping 𝑓: 𝑥 → 𝑥−1 is not continuous 

at 0. Since we know that f is continuous if for each neighborhood W of −𝑥 such that there exists a 

neighborhood V of x such that −𝑉 ⊂ 𝑊.  

If [0, 𝑏) is a neighborhood of 0 then, there is no neighborhood V of 0 such that −𝑉 ⊂ [0, 𝑏). Therefore, f is not 

continuous. Hence, G is not a topological group as desired.     

Theorem 2.2: Let G be a topological group. Then the following statements are equivalent: 

(i) G is a 𝑇0-space 

(ii) G is a 𝑇1-space 

(iii) G is a Hausdorff space. 

Theorem 2.3: Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are continuous maps, then the map 𝑔𝑜𝑓: 𝑋 → 𝑍 is continuous. 

Theorem 2.4: Let G be a topological group. Then the following maps 𝑟𝑎 ∶ 𝑥 → 𝑥𝑎, ℓ𝑎: 𝑥 → 𝑎 𝑥, 𝑥 →  𝑥−1 and 

𝑥 → 𝑎𝑥𝑎−1 are homeomorphisms. 

Proof: (i) Given that G is a topological group. Our aim is to show that 𝑟𝑎 is a homeomorphism. We first claim 

that 𝑟𝑎  is bijective. Let 𝑦 ∈ 𝐺, then 𝑟𝑎: 𝑦 → 𝑦𝑎.  

This mapping maps the element 𝑦𝑎−1  to y by multiplying 𝑎−1 on the right both sides. So 𝑟𝑎 is surjective, as 

every element of co domain is mapped to at least one element of the domain that is, image and co domain are 

equal. Now we claim that 𝑟𝑎 is injective.  

Assume that 𝑟𝑎(𝑥) =  𝑟𝑎(𝑦) for some 𝑥, 𝑦 ∈ 𝐺. This implies that 𝑥𝑎 = 𝑦𝑎. 

Now by multiplying 𝑎−1 on the right, we get, 𝑥 = 𝑦. Hence, 𝑟𝑎 is injective. Now, it remains to prove that  𝑟𝑎 

and its inverse are continuous.  

For 𝑊 ∋ 𝑥𝑎, there exists 𝑈 ∋ 𝑥  such that 𝑈𝑦 ⊂ 𝑊. So that for each 𝑊 ∈ 𝐹𝑥𝑎  ∃ 𝑈 ∈ 𝐹𝑥 such that 𝑈𝑦 ⊂ 𝑊, 

this shows 𝑟𝑎 is continuous.  

Consider the inverse mapping, 𝑟𝑎
−1(𝑥) ∶ 𝑥 → 𝑥𝑎−1, which is equivalent to 𝑟𝑎: 𝑥𝑎 → 𝑥. By the similar 

argument, 𝑟𝑎
−1 is continuous. Hence 𝑟𝑎 is a homeomorphism by definition. Similarly we can show it for left 

translation ℓ𝑎 . 

(ii) The inverse mapping 𝑥 → 𝑥−1  is bijective.  
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The mapping 𝑥 → 𝑥−1 is continuous and clearly, the inverse map of the inverse map is itself, this means that 

𝑥−1 → 𝑥 is continuous. Therefore, by definition of homeomorphism the map 𝑥 → 𝑥−1 is homeomorphism, as 

desired. 

(iii) We want to show that the inner automorphism map 𝑥 → 𝑎𝑥𝑎−1 is homeomorphism.  

The mapping 𝑥 → 𝑎𝑥𝑎−1 is a composition of two mappings 𝑥 → 𝑎𝑥 and 𝑥 → 𝑥𝑎−1.  

We already prove these two maps homeomorphism, therefore their composition 𝑥 → 𝑎𝑥𝑎−1 is also 

homeomorphism, because composition mapping is always continuous.  

3. Neighborhood System 

Definition 3.1: Let X be a topological space, let 𝑥 ∈ 𝑋 be any arbitrary point. A subset V of X is said to a 

neighborhood of x, if there exists an open set U such that 𝑥 ∈ 𝑈 ⊂ 𝑉. 

Example 3.1: The closed interval [0,1] is a neighborhood of 0.5, but not a neighborhood of 0.  

Example 3.2: “Consider set 𝑋 = {𝑝, 𝑞, 𝑟, 𝑠, 𝑡} with 𝜏𝑋 = {𝑋, 𝜙, {𝑝, 𝑞, 𝑟}, {𝑝, 𝑞, 𝑟, 𝑠}, {𝑠}}, then clearly 𝑝, 𝑞 ∈

𝑋 has exactly three neighbourhoods as given follows: 

(a) 𝑝, 𝑞 ∈  𝐴 = {𝑝, 𝑞, 𝑟} ∈ 𝜏𝑋 

(b) 𝑝, 𝑞 ∈ 𝐵 = {𝑝, 𝑞, 𝑟, 𝑠} ∈ 𝜏𝑋 

(c) 𝑝, 𝑞 ∈ 𝐶 = 𝑋 ∈ 𝜏𝑋 

So p and q has three open neighbourhoods.” 

Remark 3.1: Neighborhood of a point is not always an open set, clearly, every open set is a neighborhood of 

each of its point, because a set is called open if it is the neighborhood of every point. 

Theorem 3.1: A subset A of X is open iff for each 𝑥 ∈ 𝑋, ∃ 𝑉 ∋ 𝑥  such that 𝑉 ⊂ 𝐴.     

Definition 3.2: Let (𝑋, 𝜏) be a space. Let 𝑥 ∈ 𝑋 be any arbitrary point. Consider U be the set of all 

neighbourhoods of x. Let 𝑉 ⊂ 𝑈, then V is said to be a fundamental system of neighbourhoods of x, if for each 

𝑈1 ∈ 𝑈 there exists some  𝑉1 ∈ 𝑉 such that 𝑉1 ⊂ 𝑈. we call V as a base  for U.      

Remark 3.2: Let X be a space, then for 𝑥 ∈ 𝑋, let U denotes the set all neighbourhoods of x. Then following 

properties are established by using definitions of neighbourhoods and open set:   

(a) For each 𝑈1  in U , 𝑥 ∈ 𝑈1. 
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(b) If 𝑈1 ∈ 𝑈 and W is any subset of X such that 𝑈 ⊂ 𝑊, then 𝑊 ∈ 𝑈. 

(c) Every finite intersection of sets in U is also in U. 

Definition 2.3: (Symmetric neighborhood) Let G be a topological group with identity 𝑒. A neighborhood V 

of 𝑒 said to be symmetric if 𝑉−1 = 𝑉. 

Definition 3.4: (Symmetric subset)  Symmetric subset: Let G be group and S be any non-empty subset of G. 

then S is said to be symmetric if 𝑆 =  𝑆−1, where 𝑆−1 = {𝑥−1: 𝑥 ∈ 𝑆}. In other words, S is symmetric if 𝑥−1 ∈

𝑆, whenever 𝑥 ∈ 𝑆.  

Example 3.3: Let 𝐺 = 𝑅, the intervals (−𝑎, 𝑎) with 𝑎 > 0 are symmetric sets.  

Example 3.4: The set {−1, 1} is a symmetric set.    

Remark 3.3: Let S be the symmetric subset of a topological group G. Then, 

(a) The identity element 𝑒 lies inside the subset, that is, 𝑒 ∈ 𝑆. 

(b) The inverse of any element of subset S of G also lies inside the subset, that is, if 𝑥 ∈ 𝑆 then 𝑥−1 ∈ 𝑆. 

Theorem 3.2: Let G be topological Group with identity 𝑒. “Then there exists a fundamental system of 

neighbourhoods of identity element 𝑒 of G in G.” 

Proof: We have given that G is topological group with identity 𝑒. “Let A be the fundamental system of open 

neighbourhoods of identity e of G. Then our aim is to prove that there exists a symmetric subset 𝐴1 of A that 

satisfies the condition of fundamental system of neighbourhoods. Let 𝐴1 be the open set of A. Then for the 

group G be a topological group. Then the maps 𝑟𝑎 ∶ 𝑥 →  𝑥 𝑎, 𝑙𝑎 ∶ 𝑥 → 𝑎 𝑥 and 𝑥 →  𝑎 𝑥 𝑎−1 are 

homeomorphisms: The third mapping is homeomorphism. Since 𝑒 ∈ 𝐺, then the inverse mapping 𝑒 →  𝑒−1 is 

also homeomorphism. As A is open neighborhood of 𝑒, then 𝐴−1  will be open neighborhood of  𝑒−1. But we 

know the identity of a group is unique, so 𝑒−1. Therefore, we can say that A and 𝐴−1 are two open 

neighbourhoods of identity element 𝑒. 

Now assume that 𝑆 = 𝐴 ∩  𝐴−1. Then, 

𝑆−1 = (𝐴 ∩ 𝐴−1)−1 = 𝐴−1 ∩ (𝐴−1)−1 =  𝐴−1 ∩ 𝐴 =  𝑆. 

This implies that  𝑆−1 =  𝑆. 
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 So, S is symmetric neighborhood of x. Since A and  𝐴−1 are open, then so is their intersection S. We have  

𝑆 =  𝐴 ∩ 𝐴−1 is the open neighborhood of 𝑒, because 𝐴 ans 𝐴−1 are open neighbourhoods of 𝑒. Thus for 

each 𝐴1 ∈ 𝐴,  there is some S with 𝑆 ⊂ 𝐴. “The set of all such S forms a fundamental system of symmetric 

neighbourhoods of 𝑒.” 

Remark 2.4: “Let G be a topological group with identity e. If A and B are subsets of G. Then we define the 

set 𝐴 ∗ 𝐵 as follows:” 

𝐴 ∗ 𝐵 = {𝑎 ∗ 𝑏 ∶  𝑎 ∈  𝐴, 𝑏 ∈ 𝐵} and  𝐴−1  =  { 𝑥−1 ∶  𝑥 ∈ 𝐴}. 

Theorem 2.3: “Let G be the topological group and 𝑒 be its identity. Then, every neighborhood of identity 𝑒 in 

the topological group contains the product of a symmetric neighborhood of identity with itself.” 

Proof: Let (𝐺, 𝜏, . ) be a topological group, and 𝑒 be its identity element. Suppose that U is the neighborhood 

of 𝑒. “Claim that there exists a symmetric neighborhood V of the 𝑒 such that 𝑉. 𝑉 ⊂ 𝑈.” 

“Let V be a symmetric neighborhood of 𝑒. By definition of symmetric neighborhood, 𝑉 = 𝑉−1, where 𝑉−1 =

{ 𝑣−1: 𝑣 ∈ 𝑉}. This implies that 𝑉−1  is neighborhood of 𝑒. Suppose that V is the open neighborhood of 𝑒 

contained in U. Note that 𝑉. 𝑉−1 is an open set as V is an open set, then obviously 𝑉. 𝑉−1 will be open 

neighborhood of 𝑒. Also (𝑉. 𝑉−1)−1 =  𝑉−1. 𝑉, implies that 𝑉. 𝑉−1 is symmetric. Since, V and 𝑉−1 are open 

neighbourhoods of 𝑒 contained in U. So that, 𝑉. 𝑉−1 ⊂ 𝑈.” 
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